Fossile Mollusken in Kalksinterbildungen (Dauchen) am Lech-Ufer östlich von Hurlach (nördlich Landsberg / Lech)
نویسندگان
چکیده
منابع مشابه
Lech Madeyski — lista publikacji Lech
I. PUBLIKACJE Dokument zawiera listę publikacji sformatowanych z użyciem BibTeX. Pozycje literaturowe są podane w odwrotnej kolejności chronologicznej (od najświeższych do najstarszych): [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]. Powyższa lista został...
متن کاملA Euclidean Skolem-mahler-lech-chabauty Method
Using the theory of o-minimality we show that the p-adic method of Skolem-Mahler-Lech-Chabauty may be adapted to prove instances of the dynamical Mordell-Lang conjecture for some real analytic dynamical systems. For example, we show that if f1, . . . , fn is a finite sequence of real analytic functions fi : (−1, 1)→ (−1, 1) for which fi(0) = 0 and | f ′ i (0)| ≤ 1 (possibly zero), a = (a1, . . ...
متن کاملA generalized Skolem-Mahler-Lech theorem for affine varieties
The Skolem-Mahler-Lech theorem states that if f(n) is a sequence given by a linear recurrence over a field of characteristic 0, then the set of m such that f(m) is equal to 0 is the union of a finite number of arithmetic progressions in m ≥ 0 and a finite set. We prove that if X is a subvariety of an affine variety Y over a field of characteristic 0 and q is a point in Y , and σ is an automorph...
متن کاملA Generalised Skolem–mahler–lech Theorem for Affine Varieties
The Skolem–Mahler–Lech theorem states that if f(n) is a sequence given by a linear recurrence over a field of characteristic 0, then the set of m such that f(m) is equal to 0 is the union of a finite number of arithmetic progressions in m 0 and a finite set. We prove that if X is a subvariety of an affine variety Y over a field of characteristic 0 and q is a point in Y , and σ is an automorphis...
متن کاملLacunary Convergence of Series in L0 Lech Drewnowski and Iwo Labuda
For a finite measure λ, let L0(λ) denote the space of λ-measurable functions equipped with the topology of convergence in measure. We prove that a series in L0(λ) is subseries (or unconditionally) convergent provided each of its lacunary subseries converges. A series in a topological vector space is said to be subseries convergent if each of its subseries converges. As is well known, a subserie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E&G Quaternary Science Journal
سال: 1989
ISSN: 2199-9090
DOI: 10.3285/eg.39.1.05